Pierrotlc's group workspace
ADAIN - 32x32
What makes this group special?
Tags
alight-rooster-188
Notes
Author
State
Finished
Start time
February 1st, 2022 6:37:44 AM
Runtime
34m 52s
Tracked hours
34m 28s
Run path
pierrotlc/AnimeStyleGAN/r2vo07hg
OS
Linux-5.15.15-76051515-generic-x86_64-with-glibc2.10
Python version
3.8.5
Git repository
git clone git@github.com:Futurne/AnimeStyleGAN.git
Git state
git checkout -b "alight-rooster-188" c799412421ea74cc630b153745113d1c79ef11cf
Command
launch_training.py
System Hardware
| CPU count | 16 |
| GPU count | 1 |
| GPU type | NVIDIA GeForce RTX 3080 Laptop GPU |
W&B CLI Version
0.12.9
Group
ADAIN - 32x32Config
Config parameters are your model's inputs. Learn more
- {} 37 keys▶
- 256
- [] 2 items▶
- 0.5
- 0.9
- [] 2 items▶
- 0.5
- 0.5
- "<torch.utils.data.dataloader.DataLoader object at 0x7fe42009dd60>"
- "cuda"
- 32
- 32
- 0.3
- 200
- 0.9
- 0.9
- 0.1
- 0.0001
- 0.00001
- [] 2 items▶
- 3
- 8
- [] 2 items▶
- 3
- 8
- 256
- 12
- 50
- 3
- 5
- 4
- 10
- "Discriminator( (first_conv): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(3, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) (blocks): ModuleList( (0): DiscriminatorBlock( (convs): ModuleList( (0): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(12, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(12, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (2): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(12, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (3): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(12, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (4): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(12, 12, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) ) (downsample): Conv2d(12, 24, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) ) (1): DiscriminatorBlock( (convs): ModuleList( (0): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(24, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(24, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (2): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(24, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (3): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(24, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (4): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(24, 24, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) ) (downsample): Conv2d(24, 48, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) ) (2): DiscriminatorBlock( (convs): ModuleList( (0): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(48, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(48, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (2): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(48, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (3): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(48, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (4): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(48, 48, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(48, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) ) (downsample): Conv2d(48, 96, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) ) (3): DiscriminatorBlock( (convs): ModuleList( (0): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (2): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (3): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (4): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(96, 96, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(96, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) ) (downsample): Conv2d(96, 192, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) ) (4): DiscriminatorBlock( (convs): ModuleList( (0): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (2): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (3): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) (4): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(192, 192, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (2): BatchNorm2d(192, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (3): LeakyReLU(negative_slope=0.01) ) ) (downsample): Conv2d(192, 384, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) ) ) (classify): Sequential( (0): Conv2d(384, 1, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False) (1): Flatten(start_dim=1, end_dim=-1) ) )"
- "StyleGAN( (mapping): MappingNetwork( (norm): LayerNorm((32,), eps=1e-05, elementwise_affine=True) (layers): ModuleList( (0): Sequential( (0): Linear(in_features=32, out_features=32, bias=True) (1): LayerNorm((32,), eps=1e-05, elementwise_affine=True) (2): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Linear(in_features=32, out_features=32, bias=True) (1): LayerNorm((32,), eps=1e-05, elementwise_affine=True) (2): LeakyReLU(negative_slope=0.01) ) (2): Sequential( (0): Linear(in_features=32, out_features=32, bias=True) (1): LayerNorm((32,), eps=1e-05, elementwise_affine=True) (2): LeakyReLU(negative_slope=0.01) ) (3): Sequential( (0): Linear(in_features=32, out_features=32, bias=True) (1): LayerNorm((32,), eps=1e-05, elementwise_affine=True) (2): LeakyReLU(negative_slope=0.01) ) ) (out): Linear(in_features=32, out_features=32, bias=True) ) (synthesis): SynthesisNetwork( (blocks): ModuleList( (0): SynthesisBlock( (layers): ModuleList( (0): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) (2): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) ) (ada_in): AdaIN() (A1): Linear(in_features=32, out_features=512, bias=True) (A2): Linear(in_features=32, out_features=512, bias=True) (B1): Conv2d(10, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (B2): Conv2d(10, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) (1): SynthesisBlock( (upsample): ConvTranspose2d(256, 128, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (conv): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) (layers): ModuleList( (0): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) (2): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) ) (ada_in): AdaIN() (A1): Linear(in_features=32, out_features=256, bias=True) (A2): Linear(in_features=32, out_features=256, bias=True) (B1): Conv2d(10, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (B2): Conv2d(10, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) (2): SynthesisBlock( (upsample): ConvTranspose2d(128, 64, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (conv): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) (layers): ModuleList( (0): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) (2): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) ) (ada_in): AdaIN() (A1): Linear(in_features=32, out_features=128, bias=True) (A2): Linear(in_features=32, out_features=128, bias=True) (B1): Conv2d(10, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (B2): Conv2d(10, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) (3): SynthesisBlock( (upsample): ConvTranspose2d(64, 32, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (conv): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) (layers): ModuleList( (0): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) (2): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) ) (ada_in): AdaIN() (A1): Linear(in_features=32, out_features=64, bias=True) (A2): Linear(in_features=32, out_features=64, bias=True) (B1): Conv2d(10, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (B2): Conv2d(10, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) (4): SynthesisBlock( (upsample): ConvTranspose2d(32, 16, kernel_size=(4, 4), stride=(2, 2), padding=(1, 1)) (conv): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) (layers): ModuleList( (0): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) (1): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) (2): Sequential( (0): Dropout(p=0.3, inplace=False) (1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (2): LeakyReLU(negative_slope=0.01) ) ) (ada_in): AdaIN() (A1): Linear(in_features=32, out_features=32, bias=True) (A2): Linear(in_features=32, out_features=32, bias=True) (B1): Conv2d(10, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) (B2): Conv2d(10, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1)) ) ) (to_rgb): Conv2d(16, 3, kernel_size=(1, 1), stride=(1, 1)) ) )"
- "Adam ( Parameter Group 0 amsgrad: False betas: (0.5, 0.9) eps: 1e-08 initial_lr: 0.0001 lr: 0.0001 weight_decay: 0 )"
- "Adam ( Parameter Group 0 amsgrad: False betas: (0.5, 0.5) eps: 1e-08 initial_lr: 1e-05 lr: 1e-05 weight_decay: 0 )"
- 0.9
- 0.7
- 0
- "<torch.optim.lr_scheduler.MultiStepLR object at 0x7fe429ebc610>"
- "<torch.optim.lr_scheduler.MultiStepLR object at 0x7fe42009da30>"
- 1
- 0.1
- 0
- 0
- 1
Summary
Summary metrics are your model's outputs. Learn more
- {} 9 keys▶
- -14,274.946462402344
- -245,371.533125
- -1,459,107.1475
- 32,452.216247558594
- 32,452.216247558594
- {} 7 keys▶
- 4,913,195.065625
- 0.00000003012100027178
- 0.00000000019768499782
Artifact Outputs
This run produced these artifacts as outputs. Total: 1. Learn more
Type
Name
Consumer count
Loading...